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INTRODUCTION 
 
 Weather-related crashes have been documented for some time and continue to occur on 
central Pennsylvania roads with horrendous loss of life, personal injury, extensive property 
damage, and delay and inconvenience to motorists. Between 1997 and 2004, approximately 40% 
of all reportable crashes in the region occurred under adverse weather conditions. Furthermore, 
those crashes accounted for more than 50% of all fatal and injury crashes. 
 
 There is a need to provide Pennsylvania Department of Transportation (PennDOT) 
managers with a list of road segments and travel corridors with high risk of weather-related 
crashes, which will need to be served by weather-based warnings as part of the traveler 
information system planned for District 2-0 ITS deployment. This task is known in highway 
safety as the ranking or identification of sites for engineering safety improvements or ranking of 
Sites With Promise (SWiPs) (Hauer, 1996). In the particular case of this study, the engineering 
safety improvement proposed is the installation of an Advance Weather Warning System; 
therefore, the crash type of interest was weather-related accidents and full Bayes hierarchical 
models were used to identify road segments for possible installation of the system. 
 
 The Federal Highway Administration (FHWA) has been seeking to better integrate the 
use of surface weather information into traffic operations (e.g., National Academy of Sciences, 
2004). One area of particular interest has been the use of enhanced weather information and 
forecasting to improve response to winter road maintenance demands (e.g., Mahoney, 2003; 
Boon and Cluett, 2002). There has also been interest in user perception of web-based Road 
Weather Information System (RWIS) information for use by the general public for trip planning 
(e.g., Fayish and Jovanis, 2004; Fayish et al., 2005). Travelers in central Pennsylvania have 
expressed an interest in using RWIS information for trip planning if the relevant websites are 
readily accessible (Fayish and Jovanis, 2004; Fayish et al., 2005). 
 
 One of the most promising potential benefits of RWIS is the provision of information 
about adverse weather to travelers so that crashes may be reduced. Previous research has shown 
relationships between weather conditions and crash risk (Eisenberg and Warner, 2005; Marmor 
and Marmor, 2006; Zhang et al., 2005). This project seeks to identify sites with elevated 
weather-related crash risk, using historical crash and traffic information for Pennsylvania. 
PennDOT has expressed an interest in using the identified sites as part of a system of Highway 
Advisory Radio (HAR) websites and Changeable Message Signs (CMS) to warn travelers of 
potentially significant storms in their area (ARSAWWS, 2005). 
 
Problem Statement 
 
 This project built a crash and weather system database for use in a prototype weather 
early warning system for roadway managers and motorists within PennDOT District 2-0. The 
system is based on analysis of past crashes in the region along with historical records of 
significant weather events. There are existing procedures that use data from crash, roadway 
inventory and traffic databases to develop safety estimates for road segments. This research 
enhances those studies by adding explicit consideration of weather conditions, as derived from 
regional road and weather information systems (e.g., RWIS), to the safety prediction. As part of 
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this process, roadway volumes, matched in regional weather data, were analyzed and used to 
build the safety database. The research plan combined these four data streams (i.e., crash, 
roadway, traffic, and weather) to develop a system based on actual central Pennsylvania 
conditions.  
 
 Historical records of crashes in the region were searched from PennDOT files to 
systematically identify locations of high weather-related crash risk. The safety analysis was 
conducted using crash data from 1997 through 2004, excluding 2002. The final output of the 
project was the determination of areas and travel corridors that should be considered to be served 
by weather-based warnings as part of the traveler information system planned for District 2-0 
ITS deployment. Once the crash locations were identified, meteorology staff at Penn State 
searched background weather data (using gridded data fields) for those dates and times to 
determine the predictability of the weather events in the District 2-0 region. 
 
 While the specific findings of this particular study are applicable to PennDOT District 2-
0, the methodology is applicable to any other PennDOT district with comparable data. 
 
Data Description 
 
 The area of study was PennDOT Engineering District 2-0, which includes the counties of 
Cameron, Centre, Clearfield, Clinton, Elk, Juniata, McKean, Mifflin, and Potter, covering the 
north-central part of the state. A total of 5,001 linear miles of state-maintained roads were 
reported in District 2-0 in 2004. Figure 1 presents the study region as well as the state-
maintained roads included in the analysis. 
 
 A relational database was assembled with information from three different data sources: 
crash data, road inventory, and traffic data. All data were collected for calendar years 1997-2001 
and 2003-2004. Crash data for year 2002 were missing due to changes in the Pennsylvania Crash 
Reporting System during that year; therefore, 2002 was omitted from the analysis. Once the 
database was assembled, road segments were divided into the four analysis groups: 
 1. Two-lane rural road segments, 
 2. Two-lane urban road segments, 
 3. Multi-lane rural road segments, and 
 4. Multi-lane urban road segments. 
 
Crash Data 
 
 Crash data were obtained from the PennDOT Crash Reporting System. The data include 
reportable crashes for road segment and intersection locations (i.e., those that do not occur at a 
ramp junction). Road segments were given priority because of the ready availability of traffic 
and roadway information; data were not consistently available for ramps and intersections, 
particularly those intersecting non-state highways. Analyses of intersection crashes were 
completed for those intersections of  state highways. The data include state roads only and do not 
include Pennsylvania Turnpike crashes. 
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 For this research, weather-related crashes are defined as those crashes occurring under 
adverse weather conditions or when the road surface was wet or covered with snow, ice, or water. 
A special location code was created for each crash by concatenating the county, route and 
segment numbers in a single variable. This created unique location identification for each road 
segment. Then weather-related crashes were summarized by location code and year. 
 

 
Figure 1.  Area of Study. 

 
Roadway Inventory Data 
 
 Roadway data were obtained from the Pennsylvania Road Management System (RMS). 
RMS includes data for each road segment such as County Number, State Route Number, 
Segment Number, Segment Length, Average Daily Traffic, Pavement Width, Travel Lane Count, 
Posted Speed Limit, Divisor Type, and Urban/Rural Code. These data were complemented with 
the State Roads Digital Map from Pennsylvania Spatial Data Access (PASDA) (Pennsylvania 
Spatial Data Access, 2005) to be able to “map” crash locations. In the case of divided highways, 
each direction of traffic was considered an individual segment in the road inventory and this 
convention was maintained in the analysis. 
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Traffic Data 
 
 Since the road inventory contains average annual daily traffic (AADT) data by segment 
from the latest year, it was necessary to obtain the historical AADT for each study segment from 
a different source.  The historical AADT data came from the Pennsylvania State Highway 
Performance Monitoring System (HPMS) database. For divided highways, the AADT is reported 
for the two directions of traffic in HPMS. Since segments in each direction are being analyzed 
separately, an adjustment was made to assign the corresponding proportion of traffic to each 
direction based on the directional split in 2004 that was recorded in the road inventory database. 
Table 1 summarizes descriptive statistics of the variables included in the models.  
  

Table 1.  Summary Statistics of Variables Included in Road Segment Models. 
 

 
 
Extensive checks and verification were completed for the traffic data used in the analysis. 
Several telephone calls and communications were necessary before adequate data were available 
for the research. In all cases, PennDOT staff were attentive to project needs and worked 
diligently to provide the needed data. Care was taken to review road segments with short lengths 
and low AADT; discussions with PennDOT verified the accuracy of these values. The project 
would have benefited greatly from access to the new PennDOT data base C-DART, currently under 
development at PennDOT, which seamlessly relates crash, roadway and traffic data. 
 
METHODOLOGY 
 
Crash Analysis Background 
 
 The identification of high-risk sites is also known in the literature as the identification of 
Sites With Promise (Hauer, 1996). In the particular case of this study, the engineering safety 
improvement proposed is the installation of an Advance Weather Warning System; therefore, the 
crash type of interest was weather-related accidents and full Bayes hierarchical models were 
used to identify road segments for possible installation of the system. 
 

Road Type No. of 
Segments Variable Min. Median Mean Max. Stand. 

Dev. 
Crashes 0 0 0.1949 5 0.50 
AADT 107 4676 5932 24083 4953.25 Urban  

Two-Lane 560 
Length (ft) 106 2301 2110 4370 869.68 
Crashes 0 0 0.2408 5 0.59 
AADT 1359 8119 8597 22675 3883.36 Urban  

Multi-Lane 251 
Length (ft) 254 2393 2163 3914 852.32 
Crashes 0 0 0.1010 7 0.35 
AADT 39 786 1722 21059 2315.81 Rural  

Two-Lane 6256 
Length (ft) 135 2509 2467 3992 616.31 
Crashes 0 0 0.3324 8 0.71 
AADT 661 9875 9329 29536 3471.37 Rural  

Multi-Lane 621 
Length (ft) 234 2630 2503 3907 458.50 
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 In the Bayesian statistical framework, conclusions about parameters or unobserved data 
are made in terms of probability statements (Gelman et al., 2003). These probability statements 
are conditional in the observed quantities (the data, both dependent variables and covariates) and 
any prior knowledge on the model parameters. Therefore, Bayesian inference is based on the 
posterior distribution of the parameters of interest, given the data and the prior information on 
these parameters. In general, methods for summarizing posterior distributions are divided into 
two categories: empirical Bayes (EB) and full Bayes (FB) (Lawson et al., 2003). Within the FB 
category, posterior sampling has become very popular due to the advances in Markov Chain 
Monte Carlo methods. 
 
 Bayesian inference has a number of advantages over traditional statistical methods. 
Among them the Bayes method provides confidence (credible) intervals that are more in line 
with common-sense interpretations (Congdon, 2001). It also provides a way of including prior 
knowledge into the analysis in the form of prior distributions of parameters. Another advantage 
is the ease with which the true parameter density (possibly skew or even multi-modal) can be 
obtained (Congdon, 2003). In contrast, maximum likelihood estimates rely on asymptotic-
normality assumptions that might produce imprecise estimates under small sample sizes. 
Bayesian methods also assist in the application of random effects models for pooling strength 
across sets of related units. This “borrowing strength” improves parameter estimation in spare 
data such as small area estimates (i.e., crash frequency models), especially when large variability 
between analysis units makes it difficult to distinguish chance variability from actual differences 
in the estimates. This is the main reason why several authors have been encouraging the use of 
FB models with random effects on traffic safety (Tunaru, 1999; Miaou and Lord, 2003; Lord et 
al., 2005; Miaou and Song, 2005; Aguero-Valverde and Jovanis, 2005). Full Bayes models take 
full account of the uncertainty associated with parameter estimates and provide exact measures 
of uncertainty on the posterior distributions of these parameters, hence presenting an advantage 
over maximum likelihood and EB methods that typically ignore this uncertainty (Rao, 2003). As 
a result, maximum likelihood and EB estimates tend to overestimate precision. 
 
 Empirical Bayes methods for estimation of unsafe sites were proposed as early as 1981 
(Abbess et al., 1981).  These methods are frequently used to correct for regression-to-the-mean 
bias (Hauer et al., 2002). EB methods for ranking of sites by expected accident frequency as well 
as expected excess accident frequency have been used in several studies (e.g., Persaud et al., 
1999; Heydecker and Wu, 2001; Hauer et al., 2004; Miranda-Moreno et al., 2005). The expected 
excess accident frequency is commonly referred as Potential for Safety Improvement (Persaud et 
al., 1999) or Potential for Accident Reduction (Heydecker and Wu, 2001) and is defined as the 
difference between the expected crash frequency in the site and the expected crash frequency in a 
group of similar sites. When the expected excess accident frequency is used, sites with 
significantly more crashes than what is normal at similar sites are believed to have some site-
specific attributes that contribute to that excess (Hauer et al., 2002). 
 
 Full Bayesian hierarchical models have being used for ranking of sites only recently in a 
paper that used two different ranking criteria:  ranking by probability that the site is the worst 
and ranking by posterior distribution of ranks (Tunaru, 2002). Others have suggested the 
additional concept of the decision parameter, which is site-specific and can include traffic flow, 
covariates, space and time effects as well as random effects (Miaou and Song, 2005). 
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 In this research, full Bayes hierarchical models with random effects were used to estimate 
the expected excess crash frequency as well as the relative risk (RR) of experiencing a weather-
related crash within each road segment, compared with the risk on a group of similar segments. 
The expected value as well as the confidence interval for the excess crash frequency and RR 
were estimated; hence, the precision of the estimates was available. The expected excess crash 
frequency was then used to rank the segments.  
 
Modeling Approach 
 
 Consider the number of weather-related crashes at the ith segment and tth time period, Yit, 
to be a random variable, which is Poisson and independently distributed when conditional on its 
mean μit: 
 

The expected number of crashes in a site can be defined as the product of the exposure to the risk 
and the risk of a motor-vehicle crash as follows: 

where itμ  is the expected number of crashes at segment i and time period t, itη  is the exposure 
function at segment i and time period t, and iρ  is the normalized crash rate or expected crash risk 
by unit of exposure at segment i. 
 
 The exposure or Safety Performance Function (29) is defined as: 

where itV  is the AADT of segment i, itL  is the length of segment i, and Vβ , Lβ  are parameters 
of the model. The risk is defined as: 

where α is a constant and vi is an unstructured random effect for segment i with a normal prior 
distribution with mean = 0 and variance = 2

vσ .  
 
 Since FB models were used, vi and therefore ρi were estimated for weather-related 
crashes for the four different types of segments under study. Unobserved effects can be captured 
by vi; therefore reflecting individual differences between segments. The risk ρi can be expressed 
as the product of the exponents of α and vi , where exp(α) can be thought as the mean risk for all 
the segments under analysis and exp(vi) can be considered a measure of the relative risk for each 
segment compared with the expected risk for all the segments of this type:   

( )ititit ~Y μμ Pois
ind

 (1) 

iitit ρη=μ  (2) 

LV
ititit LV ββ=η  (3) 

( )ii v+α=ρ exp  (4) 

( )ii vRR exp=  (5) 
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The full posterior distribution of vi is estimated in the FB analysis; consequently, the credible set 
(confidence interval) for the relative risk is estimated. 
 
 The excess crash frequency can also be estimated using random effects. The excess crash 
frequency, δit, is defined as the difference between the expected crash frequency on segment i at 
time t and the expected crash frequency of a group of similar sites: 

This can be simplified to: 

RESULTS 
 
 Model estimation was performed using WinBUGS software (Spiegelhalter et al., 2006). 
Each model was run using two chains with different starting points. Generally, between 3,000 
and 5,000 MCMC iterations were discarded as burn-in. Then, 50,000 iterations for each chain 
were performed and final values sampled every 10th observation to avoid autocorrelation in the 
chains. This yielded a total sample of 10,000 observations of the posterior distribution for each 
parameter. Table 2 presents the full Bayesian hierarchical models of weather-related crashes for 
the four different road types. 
 

The variables incorporated into the models were significantly different from zero; 
however, the coefficient for length ( Lβ ) was not significantly different from one, which means 
that the expected number of crashes in the four models could be regarded as proportional to the 
length of the segments. The coefficient for traffic volume ( Vβ ) was significantly smaller than 
one for all the models; therefore, the expected number of crashes increased at a decreasing rate 
with traffic volume. Figure 2 presents the SPFs for the models assuming proportionality between 
crash frequency and segment length. Interestingly, urban segments were at the extremes, 
presenting the highest and lowest expected number of crashes by mile of road for two-lane and 
multi-lane roads respectively. By contrast, rural multi-lane segments presented a smaller 
expected number of crashes than rural two-lane segments. 
 
The mean risk for each road type (exp(α)) was the most important factor in the SPFs order. With 
a value of 7.02*E-3 the urban two-lane roads presented the highest mean risk corresponding to 
the top curve. On the other hand, urban multilane roads presented a mean risk of 0.9*E-3, while 
the lowest curve and the rural two-lane and multilane roads had mean risks of 1.1*E-3 and 
4.0*E-3, respectively (middle curves). Although there is a multiplicative effect for the volume 
variable ( V

itV
β ), its effect was not as marked as the mean risk effect in the order of the SPF 

curves. 
 
 Table 2 also presents the goodness-of-fit measures commonly used in full Bayesian 
statistics: the posterior mean of the deviance and the Deviance Information Criterion (DIC) (32).  
The deviance is estimated in the same way for frequentist and Bayesian statistics while the DIC 
is the Bayesian equivalent of the Akaike Information Criterion (AIC). As in the case of their  

( ) ( )αη−+αη=δ expexp itiitit v  (6) 

( )( )1exp −αη=δ iitit RR  (7) 
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Table 2.  Full Bayesian Hierarchical Models of Weather-Related Crashes. 
 

95% Credible Set Road Type Variable Mean Std. Dev. 
2.50% 97.50% 

α  -4.959 0.426 -5.805 -4.128
Vβ  0.470 0.048 0.376 0.564
Lβ  0.952 0.116 0.730 1.179
2
vσ  0.434 0.078 0.295 0.603
D  3614.0  

Urban 
Two-lane 

DIC 3784.0  
α  -6.924 1.531 -9.870 -3.887
Vβ  0.653 0.166 0.322 0.973
Lβ  0.799 0.166 0.483 1.130
2
vσ  0.624 0.130 0.403 0.911
D  1871.0  

Urban 
Multilane 

DIC 1976.0  
α  -6.823 0.141 -7.096 -6.549
Vβ  0.704 0.018 0.671 0.738
Lβ  1.042 0.073 0.903 1.186
2
vσ  0.455 0.0340 0.393 0.528
D  24990.0  

Rural 
Two-lane 

DIC 26170.0  
α  -5.528 0.922 -7.350 -3.757
Vβ  0.542 0.095 0.357 0.728
Lβ  1.030 0.228 0.589 1.491
2
vσ  0.503 0.059 0.397 0.629
D  5891.0  

Rural 
Multilane 

DIC 6178.0  
 
 
frequentist counterparts, deviance and DIC quantify the relative goodness-of-fit of the models; 
therefore, they are useful for comparing models. 
 

The variance of the random effects ( 2
vσ ) was significant for all of the models, which 

means that the models present overdispersion. Urban multilane shows the highest overdispersion 
with a variance of 0.624, while the lowest value is for urban two-lane roads with a variance of 
0.434. Rural roads present a variance of the random effects of 0.455 and 0.503 for two-lane and 
multilane segments, respectively.  

 
Table 3 presents the top 5% of urban two-lane roads rank ordered by descending order of 

expected excess frequency. The table also presents the expected crash frequency and the relative 
risk for each segment as well as the 90% credible set for the three values. Rank tables for the 

other three road types are estimated but not presented here for brevity.  The top-ranked segment 
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Figure 2.  Safety Performance Functions by Road Type. 
 
presents an expected excess of almost 1 crash per year or 350% more crashes than expected in 
similar sites as measured by the RR. In contrast, the third-ranked segment presents a smaller δ 
(approximately 0.8) but higher RR (6.6 or 660%). Since the RR measures a percentage while the 
excess measures an absolute number, the ranks for each of these two variables are expected to be 
different; however, in the case of urban two-lane roads in the study area the ranks are similar, at 
least in the top portion of the table. Twenty-three segments out of 560 (or 4.10%) have a 95% 
confidence or better of excess frequency being positive. Of those 23 segments, 20 are included in 
the top 5%. In fact, only segments ranked 13, 18, and 23 to 28 on the top 5% have lower than 
95% confidence of excess frequency being positive. Similarly, 18 out of 251 (7.17%), 119 out of 
6256 (1.9%), and 58 out of 621 (9.34%) segments have a 95% or better confidence of excess 
frequency being positive for urban multilane, rural two-lane and rural multilane roads, 
respectively.  
 
 Knowledge about the full posterior distribution of parameters is very important, as shown 
in Table 3 and Figure 3. For example, the ninth segment on the rank presents an excess crash 
frequency of 0.459 with a standard deviation of 0.282. Assuming this variable as normally 
distributed, the 90% confidence interval is (-0.003, 0.921); therefore, the value is not 
significantly different from zero at α = 0.05. However, the 90% credible set (or confidence 
interval) from the full posterior distribution is (0.097, 0.860); hence, significantly different from 
zero. The full posterior probability density of the parameter shown in Figure 3.a sheds further 
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light on the issue. The distributions of μ, δ, and RR present a heavy right side tail increasing the 
standard deviation, but the area under the curve to the left of zero is very small for δ. The 
probability of the excess crash frequency being smaller than zero is easier to observe by 
comparing the δ-plot in Figure 3.a with those in Figures 3.b and 3.c for segments ranked no. 1 
and 23, respectively. The area under the curve to the left of zero for δ in segment 487 (Figure 
3.b) is clearly small, while the area for segment 4 (Figure 3.c) is considerably larger. The same 
can be observed for the RR; the area to the left of one for the segment ranked no. 1 is small, 
while the area for segment ranked 23 is noticeably larger. The 90% credible sets for these 
variables are (2.012, 5.386) and (0.855, 3.331) for segments 487 and 4, respectively.  
 

Finally, segments with significant excess crash frequency and RR were mapped to 
identify their locations as well as possible corridors or clusters of roads with higher risk of 
weather-related crashes; the map is not presented here for confidentiality reasons. Those 
segments are the candidates to be part of an information system to warn travelers of potentially 
significant weather events in their area.  
 
METEOROLOGICAL ANALYSES 
 
 The premise of the meteorological component of this project is that atmospheric 
conditions which instigated weather-related crashes in District 2 had a repeatable signature. 
Simply put, the composite of snow, rain, wind, ice and fog accidents would reveal a similarity of 
atmospheric conditions with each different weather type. If this could be shown, based on 
existing data of crashes, then it was proposed that a scheme could be written that could uniquely 
and objectively identify those atmospheric conditions. This quantifiable measure of pressure, 
winds, temperature and moisture would essentially constitute a ‘fingerprint’ of those weather 
conditions associated with certain crashes. Provided there was a different signature for each, then 
it would be possible to compare that signature with numerical weather forecasts and ascertain 
how well the future (predicted) conditions might match past weather that was associated with 
some crashes. 
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Table 3.  Top 5% Rank of Expected Excess Crash Frequency for Weather-Related Crashes  
in Urban Two-Lane Segments. 

Expected No. of Crashes μ* Excess Crash Frequency δ* Relative Risk 
Credible set Credible set Credible Set Segment Rank Mean Std 

Dev. 5% 95% Mean Std. 
Dev. 5% 95% Mean Std. 

Dev. 5% 95% 
487 1 1.394 0.393 0.828 2.102 0.992 0.395 0.416 1.701 3.500 1.046 2.012 5.386
520 2 1.246 0.378 0.705 1.924 0.806 0.379 0.263 1.484 2.855 0.906 1.579 4.485

34 3 0.939 0.330 0.483 1.551 0.796 0.331 0.340 1.410 6.607 2.401 3.349 11.070
204 4 1.026 0.319 0.576 1.613 0.715 0.321 0.259 1.303 3.317 1.080 1.828 5.308
202 5 0.841 0.275 0.451 1.341 0.603 0.276 0.212 1.103 3.563 1.206 1.886 5.782
153 6 0.827 0.293 0.419 1.366 0.527 0.294 0.120 1.071 2.782 1.021 1.392 4.664

82 7 0.790 0.308 0.372 1.358 0.526 0.309 0.107 1.092 3.010 1.203 1.404 5.270
89 8 0.693 0.280 0.322 1.215 0.500 0.280 0.127 1.022 3.614 1.499 1.653 6.390

475 9 0.762 0.281 0.377 1.283 0.459 0.282 0.072 0.983 2.528 0.956 1.233 4.309
164 10 0.604 0.247 0.283 1.065 0.444 0.247 0.121 0.909 3.802 1.590 1.744 6.731
411 11 0.710 0.286 0.329 1.245 0.441 0.286 0.061 0.974 2.649 1.084 1.227 4.660
439 12 0.605 0.236 0.288 1.047 0.416 0.236 0.097 0.860 3.212 1.279 1.503 5.602
228 13 0.724 0.281 0.344 1.238 0.376 0.282 -0.004 0.894 2.096 0.834 0.990 3.655
474 14 0.629 0.248 0.298 1.091 0.353 0.248 0.022 0.814 2.292 0.921 1.081 3.989
483 15 0.635 0.248 0.300 1.102 0.353 0.249 0.019 0.820 2.265 0.907 1.067 3.981

87 16 0.526 0.216 0.238 0.925 0.350 0.216 0.061 0.749 2.999 1.250 1.341 5.315
440 17 0.538 0.221 0.248 0.950 0.342 0.222 0.050 0.753 2.749 1.148 1.248 4.890

71 18 0.660 0.256 0.313 1.128 0.337 0.257 -0.012 0.803 2.054 0.815 0.964 3.545
141 19 0.489 0.201 0.224 0.863 0.324 0.201 0.057 0.699 2.973 1.250 1.347 5.269
421 20 0.441 0.196 0.191 0.807 0.321 0.196 0.072 0.685 3.704 1.678 1.595 6.829
369 21 0.420 0.197 0.170 0.794 0.289 0.197 0.038 0.666 3.221 1.543 1.280 6.160

48 22 0.456 0.203 0.194 0.834 0.284 0.204 0.023 0.668 2.664 1.207 1.133 4.904
4 23 0.591 0.242 0.268 1.046 0.274 0.242 -0.047 0.730 1.876 0.781 0.855 3.331

72 24 0.557 0.231 0.251 0.986 0.264 0.231 -0.042 0.691 1.906 0.802 0.858 3.381
11 25 0.528 0.200 0.258 0.897 0.257 0.201 -0.016 0.628 1.957 0.758 0.941 3.356

154 26 0.512 0.212 0.226 0.909 0.255 0.213 -0.032 0.658 2.003 0.846 0.876 3.584
486 27 0.699 0.259 0.349 1.175 0.254 0.260 -0.103 0.734 1.583 0.601 0.774 2.710
517 28 0.474 0.200 0.208 0.840 0.250 0.200 -0.017 0.616 2.127 0.910 0.927 3.800

*These values are calculated for the latest year in the data (2004).
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Figure 3.  Posterior Probability Densities for several Parameters 
in the Urban Two-Lane Model. 

 
 The challenge of testing this premise had several components. First, a crash database 
where weather conditions played a role needed to be excerpted from the overall database (this is 
the information provided by the civil engineering research team). Road segments were converted 
into latitude and longitude values. The weather-related crashes then were sorted by their 
atmospheric components. Rain, fog and wind were relatively easy to sort. Snow and ice posed a 
more serious challenge. After reviewing the crash occurrences, these were divvyed into snow/ice 
storms and snow squall categories. The reason for this differentiation was due to the significant 
variation in atmospheric conditions associated with snowstorms compared with snow squalls. To 
accomplish the parsing of these events, all snow/ice related crash dates were reviewed using a 
daily weather map interface 
(http://docs.lib.noaa.gov/rescue/dwm/data_rescue_daily_weather_maps.html) to determine 
which type of event occurred. Having clarified these differences, the crash database could then 
be used to “train” the atmospheric measuring scheme.  
 
 The second challenge of testing the premise concerns the available meteorological data. 
Since an objective identification scheme was being developed, a suitable database was needed. 
The National Center for Environmental Prediction has compiled a “re-analysis” data set for the 
entire globe for every 6 hours from January 1948 to the present. Surface and upper air 
observations formed the basis of the global re-analysis (GR) (examples can be seen at: 

     (a)                                                 (b)                                                 (c) 
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http://hart.met.psu.edu/meteo497/mapper.html).  A sophisticated program was employed to 
estimate values of temperature, pressure, wind and moisture at locations where few or no 
observations were available. The GR formed the foundation of the objective identification 
scheme. However, there were two issues. The data values are available at intervals (grid-points) 
that are spaced 190 kilometers apart, meaning that only a few grid values are located in 
Pennsylvania and only one in District 2. The other issue is related to interpreting the data. In the 
science of the atmosphere, it is not the absolute value of a quantity that is necessarily significant, 
but rather its departure from a longer-term normal or average value. Therefore, a daily mean and 
its associated standard deviation of each atmospheric field, for each time and all available 
vertical levels were computed (there are four daily time intervals, about a dozen layers, and at 
least five atmospheric values on each layer). This baseline was used to determine the variation 
from normal of key atmospheric fields for each weather-crash event. For example, low-level 
moisture is important for fog crashes, whereas the juxtaposition of surface low and high pressure 
is significant for snowstorms and their related crashes. Even further, there are two elements to 
each of these fields, the magnitude of the deviation from normal and its configuration (shape) in 
the atmosphere relative to where the accidents occurred.  
 
 From this, a new technique was developed that permits the objective identification of 
both the shape and magnitude of specific key atmospheric anomaly fields associated with each 
weather-related crash type. This technique has been peer-reviewed and a paper describing it is 
pending publication in the Journal of Applied Meteorology and Climatology. In most types, there 
are between 4 and 7 crucial atmospheric fields (such as wind direction at 5,000 ft for snow 
squalls). The weighting of each field’s importance is included in this technique and a summary 
value called “event type score” is then produced. A series of statistical validations were 
performed to ensure the accuracy of this procedure. Figure 4 is an example of the outcome of this 
identification technique. 
 

For the 107 snowstorm cases identified, the concentric circles show the frequency of (in 
this case) the lowest surface pressure when crashes occurred in District 2. This new technique 
takes into account the shape of the cluster of locations as well as the magnitude (strength) of the 
low-pressure system compared to long-term averages. 

 
 The research has yielded credible results, which are patterns that are unique to the 
weather hazard associated with crashes in District 2. (For a host of different events – see 
http://hart.met.psu.edu/bvroot/.) The graphs in Figure 5 show the difference between random 
events and those “trained” using the “fingerprinting” technique. This demonstrates a “proof of 
concept.”  
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Figure 4.  Example Identification of Shape and Magnitude of Key Atmospheric 

Anomaly Fields. The size and number of concentric circles are related to the  
frequency of (in this example) surface low pressure in that location when there  

was significant snowfall in District 2. 
 
 

     
Figure 5.  Distinction between Random and “Trained” Events. The dark solid line 
shows the “score” when random dates are selected to identify the fingerprints of a 
snow, ice of fog event. The dashed line shows the “score” in identifying the unique 
signature of these events selected from the crash dates. The higher scores indicate 

an identifiable signature has been found. 
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CONCLUSIONS 
 
 A full Bayes hierarchical model has been developed to identify sites with promise for 
weather-related crashes in Central Pennsylvania. The model is similar to others in the literature 
but allows the estimation of both the expected excess crash frequency and risk ratio. The full 
Bayes formulation also allows for the inclusion of a random effects term to help address 
individual site differences. 
 
 The number of segments found to have a significant excess crash frequency of weather-
related accidents is different for each road type and varies from 2% to 9%. This percentage 
depends on the significance level selected and for this work, 95% confidence level was used. 
Since the excess crash frequency is a function of the relative risk, those segments with significant 
relative risk generally have a significant excess crash frequency as well. 
 
 The concept of relative risk may be a particularly useful tool for conveying the need for 
improvements to road users and decision makers. This concept expresses the increase in risk in 
terms of percentage with respect to a “normal population” and therefore may be more familiar to 
users from its use in epidemiology and health sciences.  
 
 Expected excess crash frequency, on the other hand, presents the advantage of being an 
absolute measure. This excess is more closely related with the crash reduction achievable with 
engineering improvements than the relative risk; therefore it is more useful for the selection of 
sites for further engineering analysis, including cost-benefit studies. 
 
 Knowledge of the precision of the estimates of excess crash frequency presents a clear 
advantage for decision making. Segments presenting high expected excess crash frequency with 
high statistical significance show potential for engineering improvements, while segments with 
high excess but lower statistical significance might be regarded as sites with less certainty in 
terms of their potential for safety improvement.  Full posterior distribution sampling is also 
advantageous in this sense, since the precision is not established in terms of distributional 
assumptions, as in the case of normal distributed variables using the mean and the standard 
deviation, but drawn from the posterior distribution in the form of a credible set. 
 
 The use of random effects made possible the estimation of RR and excess crash 
frequency for each segment. Since random effects do not change over time they are likely to 
reflect site-specific differences, assuming that the segment characteristics remain relatively 
constant over time. Random effects also prevent regression to the mean bias by means of their 
prior distribution; while random effects capture unmeasured cofounders, they are part of a zero-
mean normal distribution, which will pull the estimates to the mean. 
 
 The methodology presented here is extendable to any type of crash under investigation 
and even to other facility types. This approach can be particularly helpful when analyzing crash 
types that are relatively infrequent; the use of random effects might provide a means for 
accounting for random variability. 
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 If this were a project seeking to identify sites for action, the natural step would be an 
investigation of crashes at actual sites. Perhaps crash reports would be reviewed to assess the 
particular details of the crashes. This detailed review would help ensure that the correct road 
sections were identified. 
 
 The inclusion of spatial correlation in addition to unstructured random effects is another 
interesting extension of the research. Spatial correlation will further improve site level estimation 
by pulling strength from adjacent sites. Because the proposed HAR and CMS are intended for 
transmission and use in an area, spatial correlation is worthy of additional exploration. 
 
 Other possible covariates can be included in the models as part of the risk estimation. In 
fact, when exploring particular engineering improvements, such as lane widening, the inclusion 
of covariates related to the improvements may be desirable, in this example lane width. 
Alternative prior distributions and the sensitivity of model results to these specifications can also 
be explored. Some other functional forms can be explored as well, using the flexibility provided 
by the FB approach. 
 
 It is important to recognize that there are additional ranking methods that can be used. 
Ranking by posterior mean of the decision parameter (excess crash frequency) was used in this 
study, but ranking by the probability that the site is the worst and ranking by posterior 
distribution of ranks have also been suggested by other researchers. A possible extension of this 
work is the comparison of different ranking methods.  
 
 There are several additional steps needed to make this useful to operations. First, during 
the past 6 months, the Pennsylvania climate office has acquired a more refined dataset for North 
America on which to base the training system. This new database is called the “North American 
Regional Reanalysis” (NARR), and its grid points are only 32 km (20 miles) apart or 6 times 
finer in resolution; its values are every 3 hours or twice the temporal resolution, and it contains 
50 layers (four times the vertical resolution). In collaboration with the local National Weather 
Service Office (CTP), the climate staff has downloaded (6.3 terabytes), parsed, compressed and 
calculated the climatologic mean values of the NARR. The next step is to re-train the crash 
events using the NARR and recalibrate the event type scores for the higher-resolution data set. 
Once completed, the identification scheme would then be applied to the twice daily high-
resolution computer forecasts for this region to objectively compare the forecast anomalies 
(compared with the NARR mean values) with the signature anomalies associated with past 
crashes. While this technique has been tested off-line, there is still some development required to 
link the real-time forecasts with the “fingerprints” of past crash weather occurrences. Threshold 
values will need to be established to reduce the false-positive alerts. Finally, the communication 
and interpretation of these alerts will need to be established with PennDOT. 
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